首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144957篇
  免费   34501篇
  国内免费   36994篇
化学   98811篇
晶体学   3483篇
力学   9114篇
综合类   2311篇
数学   20109篇
物理学   82624篇
  2023年   1442篇
  2022年   2908篇
  2021年   3087篇
  2020年   3368篇
  2019年   3764篇
  2018年   3555篇
  2017年   5033篇
  2016年   4642篇
  2015年   5669篇
  2014年   6404篇
  2013年   8898篇
  2012年   9977篇
  2011年   12056篇
  2010年   15023篇
  2009年   15500篇
  2008年   10079篇
  2007年   9062篇
  2006年   8374篇
  2005年   7847篇
  2004年   7419篇
  2003年   5623篇
  2002年   5514篇
  2001年   5724篇
  2000年   5259篇
  1999年   4139篇
  1998年   3074篇
  1997年   2680篇
  1996年   2819篇
  1995年   3346篇
  1994年   3327篇
  1993年   3321篇
  1992年   2854篇
  1991年   2446篇
  1990年   2110篇
  1989年   2168篇
  1988年   2074篇
  1987年   1362篇
  1986年   1372篇
  1985年   974篇
  1984年   1093篇
  1983年   452篇
  1982年   973篇
  1981年   806篇
  1980年   820篇
  1979年   610篇
  1978年   560篇
  1977年   644篇
  1976年   1051篇
  1972年   532篇
  1971年   448篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
1.
为了获得纯度更高的碳纳米管膜, 保证材料发热稳定性, 需要对通过化学气相沉积法得到的碳纳米管膜进行二次纯化. 通过使用高温纯化炉, 在真空状态下, 从1700℃到3200℃分7挡温度对碳纳米管进行纯化, 并对其含碳量和方块电阻进行比较. 结果表明, 高温纯化后的碳纳米管膜含碳量从95.0%提高到99.9%, 解决了含碳量低的问题. 同时, 在高温纯化中发现碳纳米管膜方块电阻从纯化前3Ω降低到0.5Ω, 方块电阻的降低对碳纳米管膜具有十分重要的意义, 同样对碳纳米管膜后续产品的开发也有重要作用.  相似文献   
2.
3.
Lin  Yu  Wu  Yeyu  Tan  Xuecai  Wu  Jiawen  Huang  Kejing  Mi  Yan  Ou  Panpan  Wei  Fucun 《Journal of Solid State Electrochemistry》2022,26(4):959-971
Journal of Solid State Electrochemistry - An ultrasensitive “signal-off–on” electrochemiluminescence (ECL) biosensor is constructed based on f1-TiO2/g-C3N4/PDA for thrombin...  相似文献   
4.
5.
6.
7.
本文演示了紧凑的绿色和近红外双色连续波激光光源,其发射波长分别为516 nm和775 nm。设计并制造了级联的周期性极化掺镁铌酸锂晶体,用于同时转换通信波长的二次谐波(SHG)和三次谐波(THG),可以在相同温度下获得绿色和近红外激光的输出。通过建立一个单程激光测量系统,在2 W泵浦功率下获得516 nm的0.15 mW绿光和775 nm的1.19 mW的光,晶体温度控制在30.8 ℃。实验结果将为单激光器泵浦的紧凑型双波长共线激光器提供重要的案例。  相似文献   
8.
In this paper, we study the Holder regularity of weak solutions to the Dirichlet problem associated with the regional fractional Laplacian (-△)αΩ on a bounded open set Ω ■R(N ≥ 2) with C(1,1) boundary ■Ω. We prove that when f ∈ Lp(Ω), and g ∈ C(Ω), the following problem (-△)αΩu = f in Ω, u = g on ■Ω, admits a unique weak solution u ∈ W(α,2)(Ω) ∩ C(Ω),where p >N/2-2α and 1/2< α < 1. To solve this problem, we consider it into two special cases, i.e.,g ≡ 0 on ■Ω and f ≡ 0 in Ω. Finally, taking into account the preceding two cases, the general conclusion is drawn.  相似文献   
9.
针对机油滤清器工作工况下进出口压差、机油滤层强度及导流桩高度等问题, 通过试验测试与仿真相结合, 对滤清器初步设计进行了评估及优化, 以确保滤清器在工作工况下进出口压降及滤层强度能满足要求. 首先进行滤层性能试验, 得到滤层的惯性阻力系数和黏性阻力系数; 再通过滤层多孔介质CFD分析, 对滤清器进出口压降进行分析计算. 结果表明: 在-18℃、25℃和70℃的工况下, 进出口压降都小于10kPa, 满足相关要求. 针对滤层的最大主应力超过其抗拉强度的问题, 通过CAE仿真分析, 优化滤层与导流桩间隙, 将滤层最大主应力由110.1MPa降至36.99MPa, 小于其抗拉强度42.8MPa.  相似文献   
10.
A numerical model was developed and validated to investigate the fluid–structure interactions between fully developed pipe flow and core–shell-structured microcapsule in a microchannel. Different flow rates and microcapsule shell thicknesses were considered. A sixth-order rotational symmetric distribution of von Mises stress over the microcapsule shell can be observed on the microcapsule with a thinner shell configuration, especially at higher flow rate conditions. It is also observed that when being carried along in a fully developed pipe flow, the microcapsule with a thinner shell tends to accumulate stress at a higher rate compared to that with a thicker shell. In general, for the same microcapsule configuration, higher flow velocity would induce a higher stress level over the microcapsule shell. The deformation gradient was used to capture the microcapsule's deformation in the present study. The effect of Young's modulus on the microcapsule shell on the microcapsule deformation was investigated as well. Our findings will shed light on the understanding of the stability of core–shell-structured microcapsule when subjected to flow-induced shear stress in a microfluidic system, enabling a more exquisite control over the breakup dynamics of drug-loaded microcapsule for biomedical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号